

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Estimating the Spatial Distribution of Power Outages during Hurricanes for Risk Management

Marco Palmeri

Independent Consultant

Master's Candidate, San Francisco State University Dept. of Geography

EPRI GIS Interest Group

September 26, 2013

Project Summary

- Build a model to estimate the spatial distribution of power outages using GIS and statistical analysis techniques
- Use comprehensive and transparent methods Clear understanding of all variables
- Fill gaps in previous research
- Focus on US Northeast / Tri-State area

EPRI GIS Interest Group

Northeast US Major Storms

- Frequency of storms causing major outages is increasing.
 - -Isabel 2003 (4.3 million customers)
 - -Irene 2011 (5 million customers)
 - Sandy 2012 (8 million customers)
 - Nor'easter of Feb 2013 (650,000 customers)

Goals

- Inform response planning
- Reduce outage durations
- Assess grid resilience and plan mitigation measures

What's Been Done?

© 2013 Electric Power Research Institute, Inc. All rights reserved.

5

IBM Deep Thunder

A Statistical Model for Risk Management of Electric Outage Forecasts

- Typical weather forecasts are based on continental-scale weather models with a spatial resolution on the order of 10 km and temporal resolution of 3-hour intervals.
 - This not sufficient detail for a utility service territory.
 - Does not incorporate surface features that effect mesoscale meteorology.
- Utilizes numerical prediction model for local, highresolution weather predictions
- No discussion of variables beyond weather (wind gusts and rainfall)

Academic Research

- H. Liu, R.A. Davidson, T.V. Apanasovich. Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms. Reliability Engineering & System Safety, Volume 93, Issue 6, June 2008, Pages 897–912
- S. Han, S.D. Guikema, S.M. Quiring, K. Leed, D. Rosowsky, R.A. Davidson. Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region
- H. Liu, R.A. Davidson, D.V. Rosowsky, J.R. Stedinger. Negative binomial regression of electric power outages in hurricanes. Journal of Infrastructure Systems, 11 (4) (2005), pp. 258–267
- Look at several geographic variables
- Can benefit from industry collaboration and more sophisticated GIS analysis

General Concept

GIS: Vulnerability

Model Training:

Historical Data for Outages and Corresponding Conditions

Historical Data

Utilize historical power outage data from electric utility companies

Model Variables: Environmental

- Soil drainage and soil depth from STATSGO
- Topography from USGS
 - Can be used to predict flooding
- Land cover (forested vs. non-forested) NLCD
 - This could also be classified from high resolution aerial photos.
- Detailed vegetation data
 - Was not included in academic research due to lack of available data.
 - Useful GIS data may exist with T&D ROW management

Model Variables: Power Grid

- Raster or vector?
 - Raster may be adequate for response planning
 - Most weather and environmental data will be raster

- Summarize
 - Number of poles
 - Number of substations
 - Number of switches
 - Number of transformers

Model Variables: Weather

Existing studies show that wind gust speeds and rainfall have the strongest correlations to outages.

Model Variables: Weather (continued)

- The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs.
 - Supported by NOAA and NCAR
 - Latest model to be adopted by the National Weather Service and the US Military
 - Can produce mesoscale wind forecasts down to 3km resolution up to 72 hours into the future.
 - Hurricane WRF (HWRF) is a specialized model run while a hurricane is present

Risk Assessment: Final Results

Likelihood (determined by GIS/statistical model) + **Severity** (number of customers effected or repair time)

	Medium	High	Critical
severity	Low	Medium	High
"	Low	Low	Medium
		Likelihood	

Conclusions

- Industry collaboration can help build a better model
 - Historical outage data
 - Detailed grid data
 - -Knowledge base
- Transparent methods (no "black boxes")
- This project can help fill gaps in previous research

© 2013 Electric Power Research Institute, Inc. All rights reserved.

