

Communications & Cyber Security: Foundations of the Modern Grid

Distributed Intelligence Platform (DIP)

Stuart Laval Duke Energy

October 28, 2014 Charlotte, NC

Emerging Technology Roles and Responsibilities

- Duke Energy Emerging Technology is responsible for:
 - Technology development and testing
 - New technology strategy, roadmap, risk and opportunity identification
 - Lab/field testing of new technology
 - Establish business value and initial business case

The Electric Grid: Past vs. Present vs. Future

Source: EPRI

Core Mission:

- 1. Safe
- 2. Reliable
- 3. Affordable

Core Mission:

- 1. Safe
- 2. Reliable
- 3. Affordable
- 4. Environmentally Responsible
- 5. Connected Integrated

Strategy for the Integrated Grid

Drivers

- Distributed Energy Resources
- **Demand Response**
- **Electric Vehicles**
- In-Premise Automation
- **Cybersecurity Threats**
- Aging Infrastructure
- "Big Data" Complexity
- Stranded Assets

New Requirements

- **Proactive Operations**
- Situational Awareness
- Fast Edge Decisions
- Seamless Interoperability
- Modularity / Scalability
- Hybrid Central/Distributed
- **Zero Touch Deployments**
- Refined Utility Skillsets

Technology Approach

- Internet Protocol
- **Translation**
- **Common Dictionary**
- Security
- **Analytics**

Distributed Intelligence **Platform** (DIP)

DIP: "Internet of Things" Platform for the Utility

Field Message Bus: The Distributed "Internet of Things" Enabler

Current State - Message Bus at Data Center

- Interoperability between OT, IT, & Telecom
- Modular & Scalable Hardware and Software
- End-to-End Situational Awareness

Distributed Intelligence Platform

Multi-level Hierarchy: Seamless, Modular, Scalable

How Should We Evolve Our Cyber Security Capabilities?

A traditional firewall and encryption schema on a centrally-managed platform is not enough to survive against modern threats.

While a central, corporate network may survive, the security of field assets can be compromised.

For example, STUXNET is malware that targets SCADA and is spread via USB drive across a trusted network.

Modern attacks are aware of (and can defeat) common firewall and encryption techniques.

A Distributed, Standards-Based, Inter-Operable System Also **Provides Significantly Enhanced Cyber Security Capabilities**

Why is this Important for Duke Energy?

- Provides accurate control and alleviates intermittency of distributed energy resources
- Provides the ability to scale independently, as needed, without needing a system wide rollout
- Takes cost out of the business by reducing integration time and effort
- Allows Duke to be at the forefront of developing new regulations and policies

Questions / Discussion

Communications and Cyber Security: Foundations of the Modern Grid

Irvine Smart Grid Demonstration

Bob Yinger
Advanced Technology
Southern California Edison
October 28, 2014
Charlotte, NC

Bio – Bob Yinger

- Consulting Engineer position in SCE's Advanced
 Technology group focused on Smart Grid implementation
- 37 years experience with SCE working in research:
 - Solar and wind energy development
 - Communications technologies
 - Electronic metering
 - Substation and Distribution automation
 - Inverter behavior and integration
- P.I. and Chief Engineer Irvine Smart Grid Demonstration
- BSEE Calif State Univ, Long Beach, P.E in electrical engineering, member of IEEE

Project Description

- Objective: Build and operate a cross-section of what the smart grid may resemble within 10 years
- Location Irvine, CA (UC Irvine area)
- Key sub-projects:
 - Zero net energy homes with storage
 - Solar car shade with storage and EV charging
 - Distribution volt/VAR control system
 - Advanced distribution circuit protection system
 - IEC 61850 substation automation using Substation Configuration Language
 - Advanced common cyber security services and back office systems
 - Workforce of the future

Project Successes - Field Area Networks

- Implemented 4G public cell communications for data collection and control of in-home equipment
- Constructed distribution protection system assisted by low latency unlicensed radio network

Surprises – Field Area Networks

- 4G cell radio coverage not as good as expected causing data dropouts
 - Experimented with better antennae
 - Relocated equipment
- Low latency radios were hard to find and did not have coverage expected
 - Explored several systems that did not meet our needs
 - Vendor RF coverage claims are optimistic

Reaching Beyond – Field Area Networks

- Radio bandwidth for private systems is not available or expensive which limits deployments to the unlicensed band or public networks
 - Can the FCC set aside bandwidth for utilities?
- Getting good radio coverage is difficult in the real world
 - Mesh networks can route around obstacles
 - Try to avoid engineering each link
 - Models just give indication of RF coverage
 - Trade-off deterministic latency for "good enough" latency
 - Antenna aesthetics are a big deal in underground areas

Project Successes – Cyber Security

- Implemented advanced centralized cyber security system
- Provided end-to-end security from back office to field equipment and substation automation system

Surprises – Cyber Security

- All existing systems in use when the project started seemed too "siloed" or were not scalable
 - Turned to tech transfer from the DoD
- While some standards existed, they did not cover the range of cyber security we wanted
 - Built centralized system to ease administration
 - Provided overview of whole system to allow threats on several fronts to be correlated

Reaching Beyond – Cyber Security

- Security risk = Probability of attack x Impact
- Grid modernization increases the places cyber attacks can take place (more connected devices)
- Need to push for open standards in the cyber security area so products will be interoperable
- Plan to meet future requirements of NERC CIP
- Scalability is critical because of the number of smart endpoints being installed on the grid
- Need to support legacy equipment with "bump in the wire" solution

Questions

Bob Yinger
Advanced Technology
Southern California Edison
Robert.Yinger@sce.com

Communications & Cyber Security: Foundations of Modern Grid

The Smart Grid Experience: Applying Results, Reaching Beyond

October 27-29, 2014 Charlotte, NC

Presenter Bio:

Joe Nowaczyk, Director, SRP

- 30 years at SRP
- Variety of experiences including, Strategic Planning, Resource Planning, Marketing, Metering & Field Customer Services Substation and Transmission Line Design & Construction, Gas Fired Generation Engineering, Substation Maintenance, and more..
- Director of Electronic Systems for 7 years including,
 Communications, Control, and Protection Systems.

Joe Nowaczyk

Background:

SRP Territories

 Microwave The Salt River Project Agricultural Improvement and Power District provides electricity to power Fiber users in a 2,900 square-mile service area in parts of Maricopa, Gila and Pinal Counties. SRP reservoirs feed the 135 mile canal system that, along with other smaller waterways, carries water to Miami eight cities, as well as agricultural and urban irrigators. Flagstaff Electric service area served exclusively by SRP. SRP provides full power requirements of another utility for resale. SRP provides full power requirements of another utility for resale. Project makes direct sales to customers for all mining loads. Electric service areas not served by SRP. SRP's irrigated area. North

Current Environment

- Different applications are utilizing different communications solutions
 - Distribution Feeder Automation (DFA) Unlicensed 900MHz
 - Water SCADA Licensed and Unlicensed 900MHz
 - Capacitor Control (VOLT/VAR) 150MHz Licensed Paging System
 - Field Emergency Communications 150MHz Licensed Paging System
 - Trunked Radio 900MHz Licensed Land Mobile Radio System
 - AMI 900 MHz Unlicensed Mesh, Commercial Cellular Backhaul
 - Vehicle Location Commercial Cellular
 - Truck Mounted Laptops Commercial Cellular
 - Power Quality Meters Commercial Cellular

26

Future Business Drivers

- Future grid automation and customer programs will bring proliferation of intelligent electronic devices (IEDs) to the field requiring communications.
 - DFA expansion supporting reliability improvements
 - Renewable energy resource integration
 - VOLT/VAR optimization for power quality & reduced losses
 - Remote fault indication to improve outage response
 - Distribution and meter data for real-time operations
 - Automation of water delivery infrastructure
 - Remote video surveillance to mitigate risks

SRP Unified FAN Vision

- System Characteristics:
 - Broadband
 - Ubiquitous Two Way Communication

Secure

Private Network

BACKHAUL

Wireless Connectivity

Substation/Facility

Wireless Base Station

Video / Security

Land Mobile Radio

Distributed Generation

T&D Equipment

Crew Vehicles

Customers/Meters

Water Facilities

Mobile Computing

Home Area Networking / Demand Response

SRP Pay Center

SRP FAN Pilot Objectives

- SRP, in partnership with EPRI, launched a FAN Pilot in May 2012 with the goal to define a strategy for next generation field area communications
 - Implement base stations at three locations
 - Define requirements, integrate, and test 2-way communications for various end user applications
 - Assess technology (WiMAX vs. LTE, RF spectrum & cyber security)
 - Evaluate alternative public/private models
 - Assess the business case
 - Develop strategy & proposal

SRP FAN Deployment

Network

 operational
 since Feb

 2013

oothills GE MDS 3650 AP/Base Station

Guadalupe

Implementation Models

	Public	Private	Hybrid	PSBN
Availability				
Scalability				
Traffic Prioritization/SLA				
Fault Tolerance/Resiliency				
Cyber Security Control				
Service Coverage Control				
Network Customization				
Capital Expense (CAPEX)				
Operational Expense (OPEX)				

Green = Best, Yellow = Moderate, Red = Worst

Scenario Evaluation

	Lic. LTE	3.65 WiMAX	WIFI Mesh
Spectrum			
Technology Longevity			
Equipment Availability			
Total Cost of Ownership			
Labor Resources			
Cyber Security			

	Lic. LTE	3.65 WiMAX	WIFI Mesh
Total Capital Cost	~\$8M	~9.5M	~25M
Base Stations	30	128	3450

Pilot Conclusions

- SRP is well positioned with backhaul, geography, real estate, and experience
- Unification of existing wireless systems is feasible
- Numerous application benefits enabling grid modernization & optimization
- Private is better than public networks
- Long Term Evolution (LTE) is preferred
- Licensed spectrum is preferred
- Strategy to deploy private field area networks common in utility industry

Business Case Conclusion

A private wireless broadband network will enable application benefits and cost optimization

- Enables advanced grid automation & customer programs
- FAN decision similar to fiber build out strategy
- Private provides improved reliability and competitive NPV
- Unified platform needed in advance of project requirements
- Economy of scale optimizing cost and security architecture
- Private promotes use while public promotes minimization
- Large number of potential SRP customers
- Supports capital based funding model versus O&M

Pilot Surprises

- Numerous Wireless Internet Service Providers (WISPs)
 Utilizing 3.65GHz
- FCC Database Inaccuracies
- Security vulnerability discovered related to rogue WiMAX base stations
- Gathering application requirements is challenging.

Changes

- Initially planned on leasing 1.4GHz
- Had to use 3.65GHz due to spectrum holder of 1.4 going bankrupt

35

Lessons Learned

- The Phoenix area has a 3.65GHz user group for coordinating the use of 3.65GHz. There's no information on this on the FCC website. Coordinating with the users group would be important for any additional deployments of 3.65GHz. We discovered this when we interfered with local WISP. Action was taken and the issue was addressed coordinating through the users group.
- The 3.65GHz band would be challenging to deploy throughout SRP's service territory as the bulk of SRP's distribution system is underground. 3.65GHz would be better as an intermediate wireless backhaul solution from fixed clients that allowed for higher antenna heights. There would also be the potential for others to start deploying 3.65GHz and interfere with our system as we did with the WISP.

FAN Proposal: SRP FAN Proposal

Implement a private broadband network utilizing licensed spectrum as a <u>strategic</u> asset to get in front of future communications needs.

- Two new labor resources for O&M required
- Outdoor wireless coverage for power and water
- Long Term Evolution (LTE) 30 sites
- Focus on reliability, performance & cyber security
- End point devices not included (Support is included)
- Requires licensed spectrum acquisition

37

FAN Proposal:

SRP FAN Proposed Wireless Coverage

- ~2,000 Square Miles
- 10Mbps
- 9K-15K devices

Yellow = Fixed outdoor wireless coverage, Blue = SRP Service Territory

FAN Proposal: Potential FAN Applications

Distribution Feeder Automation (DFA)	Water SCADA (Gatekeepers)
Remote Fault Indication (RFI)	Water Measurement
VOLT/VAR Optimization	Substation/Plant Monitoring
Conservation Voltage Reduction	Renewable Generation SCADA
Aviation Light Monitoring	Physical Security & Surveillance
Power Quality Meters	Advanced Meter Infrastructure

FAN Proposal:

Implementation Risks

Risk	Impact	Mitigation
Availability of Licensed Spectrum	Lack of spectrum for procurement would eliminate the licensed option from consideration.	Research and test other scenarios while continuing pursuit of licensed spectrum
LTE Device Availability	Immaturity or lack of availability of "LTE Advanced" compatibility, re-banding in licensed frequency obtained and/or limited equipment availability would impact schedule.	Extend schedule to 3 years to allow the market to mature. WiMAX equipment could be considered as alternative to LTE.
Application Coordination	Large scale CPE deployments could strain resources. Difficult coordinating multiple budgets around FAN availability could create schedule issues.	Extend schedule to 3 years to allow coordination of end-user application plans. Work with stakeholders to ensure effective resource planning
Resource Constraints	Resources may be constrained due to conflicting priorities and availability causing delays.	Extend schedule to 3 years to avoid peak workloads currently anticipated in FY15. Add additional positions to cover ongoing support requirements. Ensure effective resource planning.

Questions / Discussion

