Communications & Cyber Security: Foundations of the Modern Grid

Distributed Intelligence Platform (DIP)

Stuart Laval
Duke Energy

October 28, 2014
Charlotte, NC
Emerging Technology Roles and Responsibilities

- Duke Energy Emerging Technology is responsible for:
 - Technology development and testing
 - New technology strategy, roadmap, risk and opportunity identification
 - Lab/field testing of new technology
 - Establish business value and initial business case
The Electric Grid: Past vs. Present vs. Future

Past

Core Mission:
1. Safe
2. Reliable
3. Affordable

Present Path

Future

Integrated Grid

Core Mission:
1. Safe
2. Reliable
3. Affordable
4. Environmentally Responsible
5. Connected
6. Integrated

Source: EPRI
Strategy for the Integrated Grid

Drivers
• Distributed Energy Resources
• Demand Response
• Electric Vehicles
• In-Premise Automation
• Cybersecurity Threats
• Aging Infrastructure
• “Big Data” Complexity
• Stranded Assets

New Requirements
• Proactive Operations
• Situational Awareness
• Fast Edge Decisions
• Seamless Interoperability
• Modularity / Scalability
• Hybrid Central/Distributed
• Zero Touch Deployments
• Refined Utility Skillsets

Technology Approach
1. Internet Protocol
2. Translation
3. Common Dictionary
4. Security
5. Analytics

Source: EPRI
DIP: “Internet of Things” Platform for the Utility

DEMAND
- Smart Assets
- Smart Meter
- Transformer
- Other Nodes
- Line Sensor
- Distributed Energy Resources
- Capacitor Bank
- Intelligent Switch
- Street Light

ELECTRIC GRID
- Smart Generation
- Continuous Emission Monitoring
- Weather Sensor

SUPPLY

Open Standard Node

Radio

Internet Protocol Connectivity

CPU

Distributed Intelligence

IP Network

UTILITY DATA CENTER
- Network Router
- Data Center Message Bus

DIP: “Internet of Things” Platform for the Utility

© 2014 Electric Power Research Institute, Inc. All rights reserved.

EPRI / DOE The Smart Grid Experience: Applying Results, Reaching Beyond
Field Message Bus: The Distributed “Internet of Things” Enabler

- Interoperability between OT, IT, & Telecom
- Modular & Scalable Hardware and Software
- End-to-End Situational Awareness

Distributed Intelligence Platform
Multi-level Hierarchy: Seamless, Modular, Scalable

End Points
Devices

AMI
Smart
Meters

Local Area
Network (LAN)

> 15 min
< 5 min

Lower Tiered
Nodes (e.g. grid)

Router
Virtual
Software

Middle Tiered
Nodes (e.g. substation)

Field Area
Network (FAN)

< 50 ms

Upper Tier
Central Office
(Utility Datacenter)

Head
cend

MDM

Corporate
Private
Network

Enterprise
Bus

Enterprise
Bus

Legend

- Core Processor
- Application Processor
- Physical Transport
- Virtual Telemetry

© 2014 Electric Power Research Institute, Inc. All rights reserved.
How Should We Evolve Our Cyber Security Capabilities?

A traditional firewall and encryption schema on a centrally-managed platform is not enough to survive against modern threats.

While a central, corporate network may survive, the security of field assets can be compromised.

For example, STUXNET is malware that targets SCADA and is spread via USB drive across a trusted network.

Modern attacks are aware of (and can defeat) common firewall and encryption techniques.
A Distributed, Standards-Based, Inter-Operable System Also Provides Significantly Enhanced Cyber Security Capabilities

Because each intelligent field device can now act as a security “agent”, cyber capabilities can be significantly improved.

1. Detect and visualize the issue.
2. Isolate the threat.
3. Inoculate the harm.
4. Restore layered protection.
Why is this Important for Duke Energy?

• Provides accurate control and alleviates intermittency of distributed energy resources

• Provides the ability to scale independently, as needed, without needing a system wide rollout

• Takes cost out of the business by reducing integration time and effort

• Allows Duke to be at the forefront of developing new regulations and policies
Questions / Discussion
Communications and Cyber Security: Foundations of the Modern Grid

Irvine Smart Grid Demonstration

Bob Yinger
Advanced Technology
Southern California Edison
October 28, 2014
Charlotte, NC
Bio – Bob Yinger

• Consulting Engineer position in SCE’s Advanced Technology group - focused on Smart Grid implementation

• 37 years experience with SCE working in research:
 – Solar and wind energy development
 – Communications technologies
 – Electronic metering
 – Substation and Distribution automation
 – Inverter behavior and integration

• P.I. and Chief Engineer – Irvine Smart Grid Demonstration

• BSEE Calif State Univ, Long Beach, P.E in electrical engineering, member of IEEE
Project Description

- **Objective:** Build and operate a cross-section of what the smart grid may resemble within 10 years
- **Location** – Irvine, CA (UC Irvine area)
- **Key sub-projects:**
 - Zero net energy homes with storage
 - Solar car shade with storage and EV charging
 - Distribution volt/VAR control system
 - Advanced distribution circuit protection system
 - IEC 61850 substation automation using Substation Configuration Language
 - Advanced common cyber security services and back office systems
 - Workforce of the future
Project Successes - Field Area Networks

- Implemented 4G public cell communications for data collection and control of in-home equipment
- Constructed distribution protection system assisted by low latency unlicensed radio network
Surprises – Field Area Networks

- 4G cell radio coverage not as good as expected causing data dropouts
 - Experimented with better antennae
 - Relocated equipment
- Low latency radios were hard to find and did not have coverage expected
 - Explored several systems that did not meet our needs
 - Vendor RF coverage claims are optimistic
Reaching Beyond – Field Area Networks

• Radio bandwidth for private systems is not available or expensive which limits deployments to the unlicensed band or public networks
 – Can the FCC set aside bandwidth for utilities?
• Getting good radio coverage is difficult in the real world
 – Mesh networks can route around obstacles
 – Try to avoid engineering each link
 – Models just give indication of RF coverage
 – Trade-off deterministic latency for “good enough” latency
 – Antenna aesthetics are a big deal in underground areas
Project Successes – Cyber Security

• Implemented advanced centralized cyber security system
• Provided end-to-end security from back office to field equipment and substation automation system
Surprises – Cyber Security

• All existing systems in use when the project started seemed too “siloed” or were not scalable
 – Turned to tech transfer from the DoD
• While some standards existed, they did not cover the range of cyber security we wanted
 – Built centralized system to ease administration
 – Provided overview of whole system to allow threats on several fronts to be correlated
Reaching Beyond – Cyber Security

• Security risk = Probability of attack x Impact
• Grid modernization increases the places cyber attacks can take place (more connected devices)
• Need to push for open standards in the cyber security area so products will be interoperable
• Plan to meet future requirements of NERC CIP
• Scalability is critical because of the number of smart endpoints being installed on the grid
• Need to support legacy equipment with “bump in the wire” solution
Questions

Bob Yinger
Advanced Technology
Southern California Edison
Robert.Yinger@sce.com
Communications & Cyber Security: Foundations of Modern Grid

The Smart Grid Experience: Applying Results, Reaching Beyond

October 27-29, 2014
Charlotte, NC
Presenter Bio:
Joe Nowaczyk, Director, SRP

- 30 years at SRP

- Variety of experiences including, Strategic Planning, Resource Planning, Marketing, Metering & Field Customer Services Substation and Transmission Line Design & Construction, Gas Fired Generation Engineering, Substation Maintenance, and more..

- Director of Electronic Systems for 7 years including, Communications, Control, and Protection Systems.
Background:
SRP Territories

The Salt River Project Agricultural Improvement and Power District provides electricity to power users in a 2,900 square-mile service area in parts of Maricopa, Gila and Pinal Counties.

SRP reservoirs feed the 135 mile canal system that, along with other smaller waterways, carries water to eight cities, as well as agricultural and urban irrigators.

- Microwave
- Fiber
FAN Pilot: Current Environment

- Different applications are utilizing different communications solutions
 - Distribution Feeder Automation (DFA) – Unlicensed 900MHz
 - Water SCADA – Licensed and Unlicensed 900MHz
 - Capacitor Control (VOLT/VAR) – 150MHz Licensed Paging System
 - Field Emergency Communications – 150MHz Licensed Paging System
 - Trunked Radio – 900MHz Licensed Land Mobile Radio System
 - AMI – 900 MHz Unlicensed Mesh, Commercial Cellular Backhaul
 - Vehicle Location – Commercial Cellular
 - Truck Mounted Laptops – Commercial Cellular
 - Power Quality Meters – Commercial Cellular
FAN Pilot: Future Business Drivers

• Future grid automation and customer programs will bring proliferation of intelligent electronic devices (IEDs) to the field requiring communications.
 – DFA expansion supporting reliability improvements
 – Renewable energy resource integration
 – VOLT/VAR optimization for power quality & reduced losses
 – Remote fault indication to improve outage response
 – Distribution and meter data for real-time operations
 – Automation of water delivery infrastructure
 – Remote video surveillance to mitigate risks
FAN Pilot: SRP Unified FAN Vision

• System Characteristics:
 – Broadband
 – Ubiquitous Two Way Communication
 – Fiber Backhaul
 – Secure
 – Private Network
FAN Pilot:
SRP FAN Pilot Objectives

• SRP, in partnership with EPRI, launched a FAN Pilot in May 2012 with the goal to define a strategy for next generation field area communications
 – Implement base stations at three locations
 – Define requirements, integrate, and test 2-way communications for various end user applications
 – Assess technology (WiMAX vs. LTE, RF spectrum & cyber security)
 – Evaluate alternative public/private models
 – Assess the business case
 – Develop strategy & proposal
FAN Pilot: SRP FAN Deployment

- Network operational since Feb 2013
FAN Pilot: Implementation Models

<table>
<thead>
<tr>
<th></th>
<th>Public</th>
<th>Private</th>
<th>Hybrid</th>
<th>PSBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Prioritization/SLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Tolerance/Resiliency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyber Security Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Coverage Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Customization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Expense (CAPEX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Expense (OPEX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green = Best, Yellow = Moderate, Red = Worst
FAN Pilot: Scenario Evaluation

<table>
<thead>
<tr>
<th>Factor</th>
<th>Lic. LTE</th>
<th>3.65 WiMAX</th>
<th>WIFI Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology Longevity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Availability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cost of Ownership</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyber Security</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>Lic. LTE</th>
<th>3.65 WiMAX</th>
<th>WIFI Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Capital Cost</td>
<td>~$8M</td>
<td>~9.5M</td>
<td>~25M</td>
</tr>
<tr>
<td>Base Stations</td>
<td>30</td>
<td>128</td>
<td>3450</td>
</tr>
</tbody>
</table>
FAN Pilot: Pilot Conclusions

• SRP is well positioned with backhaul, geography, real estate, and experience

• Unification of existing wireless systems is feasible

• Numerous application benefits enabling grid modernization & optimization

• Private is better than public networks

• Long Term Evolution (LTE) is preferred

• Licensed spectrum is preferred

• Strategy to deploy private field area networks common in utility industry
FAN Pilot: Business Case Conclusion

A private wireless broadband network will enable application benefits and cost optimization

- Enables advanced grid automation & customer programs
- FAN decision similar to fiber build out strategy
- Private provides improved reliability and competitive NPV
- Unified platform needed in advance of project requirements
- Economy of scale optimizing cost and security architecture
- Private promotes use while public promotes minimization
- Large number of potential SRP customers
- Supports capital based funding model versus O&M
FAN Pilot: Pilot Surprises

- Numerous Wireless Internet Service Providers (WISPs) Utilizing 3.65GHz
- FCC Database Inaccuracies
- Security vulnerability discovered related to rogue WiMAX base stations
- Gathering application requirements is challenging.

Changes

- Initially planned on leasing 1.4GHz
- Had to use 3.65GHz due to spectrum holder of 1.4 going bankrupt
FAN Pilot:
Lessons Learned

• The Phoenix area has a 3.65GHz user group for coordinating the use of 3.65GHz. There’s no information on this on the FCC website. Coordinating with the users group would be important for any additional deployments of 3.65GHz. We discovered this when we interfered with local WISP. Action was taken and the issue was addressed coordinating through the users group.

• The 3.65GHz band would be challenging to deploy throughout SRP’s service territory as the bulk of SRP’s distribution system is underground. 3.65GHz would be better as an intermediate wireless backhaul solution from fixed clients that allowed for higher antenna heights. There would also be the potential for others to start deploying 3.65GHz and interfere with our system as we did with the WISP.
FAN Proposal: SRP FAN Proposal

Implement a private broadband network utilizing licensed spectrum as a **strategic** asset to get in front of future communications needs.

- Two new labor resources for O&M required
- Outdoor wireless coverage for power and water
- Long Term Evolution (LTE) – 30 sites
- Focus on reliability, performance & cyber security
- End point devices not included (Support is included)
- Requires licensed spectrum acquisition
FAN Proposal:
SRP FAN Proposed Wireless Coverage

- ~2,000 Square Miles
- 10Mbps
- 9K-15K devices

Yellow = Fixed outdoor wireless coverage, Blue = SRP Service Territory
FAN Proposal: Potential FAN Applications

<table>
<thead>
<tr>
<th>Distribution Feeder Automation (DFA)</th>
<th>Water SCADA (Gatekeepers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Fault Indication (RFI)</td>
<td>Water Measurement</td>
</tr>
<tr>
<td>VOLT/VAR Optimization</td>
<td>Substation/Plant Monitoring</td>
</tr>
<tr>
<td>Conservation Voltage Reduction</td>
<td>Renewable Generation SCADA</td>
</tr>
<tr>
<td>Aviation Light Monitoring</td>
<td>Physical Security & Surveillance</td>
</tr>
<tr>
<td>Power Quality Meters</td>
<td>Advanced Meter Infrastructure</td>
</tr>
</tbody>
</table>
FAN Proposal: Implementation Risks

<table>
<thead>
<tr>
<th>Risk</th>
<th>Impact</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability of Licensed Spectrum</td>
<td>Lack of spectrum for procurement would eliminate the licensed option from consideration.</td>
<td>Research and test other scenarios while continuing pursuit of licensed spectrum</td>
</tr>
<tr>
<td>LTE Device Availability</td>
<td>Immaturity or lack of availability of “LTE Advanced” compatibility, re-bandng in licensed frequency obtained and/or limited equipment availability would impact schedule.</td>
<td>Extend schedule to 3 years to allow the market to mature. WiMAX equipment could be considered as alternative to LTE.</td>
</tr>
<tr>
<td>Application Coordination</td>
<td>Large scale CPE deployments could strain resources. Difficult coordinating multiple budgets around FAN availability could create schedule issues.</td>
<td>Extend schedule to 3 years to allow coordination of end-user application plans. Work with stakeholders to ensure effective resource planning</td>
</tr>
<tr>
<td>Resource Constraints</td>
<td>Resources may be constrained due to conflicting priorities and availability causing delays.</td>
<td>Extend schedule to 3 years to avoid peak workloads currently anticipated in FY15. Add additional positions to cover ongoing support requirements. Ensure effective resource planning.</td>
</tr>
</tbody>
</table>
Questions / Discussion