Estimating the Spatial Distribution of Power Outages during Hurricanes for Risk Management

Marco Palmeri
Independent Consultant
Master’s Candidate, San Francisco State University Dept. of Geography

EPRI GIS Interest Group
September 26, 2013
Project Summary

• Build a model to estimate the spatial distribution of power outages using GIS and statistical analysis techniques

• Use comprehensive and transparent methods – Clear understanding of all variables

• Fill gaps in previous research

• Focus on US Northeast / Tri-State area
Northeast US Major Storms

• Frequency of storms causing major outages is increasing.
 – Isabel 2003 (4.3 million customers)
 – Irene 2011 (5 million customers)
 – Sandy 2012 (8 million customers)
 – Nor’eastern of Feb 2013 (650,000 customers)
Goals

- Inform response planning
- Reduce outage durations
- Assess grid resilience and plan mitigation measures
What’s Been Done?
A Statistical Model for Risk Management of Electric Outage Forecasts

- Typical weather forecasts are based on continental-scale weather models with a spatial resolution on the order of 10 km and temporal resolution of 3-hour intervals.
 - This not sufficient detail for a utility service territory.
 - Does not incorporate surface features that effect mesoscale meteorology.

- Utilizes numerical prediction model for local, high-resolution weather predictions

- No discussion of variables beyond weather (wind gusts and rainfall)
Academic Research

- S. Han, S.D. Guikema, S.M. Quiring, K. Leed, D. Rosowsky, R.A. Davidson. *Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region*

• Look at several geographic variables
• Can benefit from industry collaboration and more sophisticated GIS analysis
General Concept

GIS: Vulnerability

Base Topography
Power Grid
Land Cover / Vegetation
Soils
Weather: Wind Gusts / Rainfall
Composite Vulnerability

Model Training:
Historical Data for Outages and Corresponding Conditions
Historical Data

- Utilize historical power outage data from electric utility companies

Occurrence:
- Equipment Effected

Weather conditions
- Synoptic conditions
- Mesoscale conditions
- Gusts / rainfall

Environmental conditions
- Soil characteristics
- Land cover / vegetation
- Topography
Model Variables: Environmental

- Soil drainage and soil depth – from STATSGO
- Topography – from USGS
 - Can be used to predict flooding
- Land cover (forested vs. non-forested) – NLCD
 - This could also be classified from high resolution aerial photos.
- Detailed vegetation data
 - Was not included in academic research due to lack of available data.
 - Useful GIS data may exist with T&D ROW management
Model Variables: Power Grid

- Raster or vector?
 - Raster may be adequate for response planning
 - Most weather and environmental data will be raster

- Summarize
 - Number of poles
 - Number of substations
 - Number of switches
 - Number of transformers
Model Variables: Weather

Existing studies show that wind gust speeds and rainfall have the strongest correlations to outages.
Model Variables: Weather (continued)

• The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs.
 – Supported by NOAA and NCAR
 – Latest model to be adopted by the National Weather Service and the US Military
 – Can produce mesoscale wind forecasts down to 3km resolution up to 72 hours into the future.
 – Hurricane WRF (HWRF) is a specialized model run while a hurricane is present
Risk Assessment: Final Results

Likelihood (determined by GIS/statistical model) + **Severity** (number of customers effected or repair time)
Conclusions

• Industry collaboration can help build a better model
 – Historical outage data
 – Detailed grid data
 – Knowledge base

• Transparent methods (no “black boxes”)

• This project can help fill gaps in previous research