

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Field Area Network Demo

Smart Grid Informational Webcast November 25, 2013

Tim Godfrey Senior Project Manager Smart Grid Communications

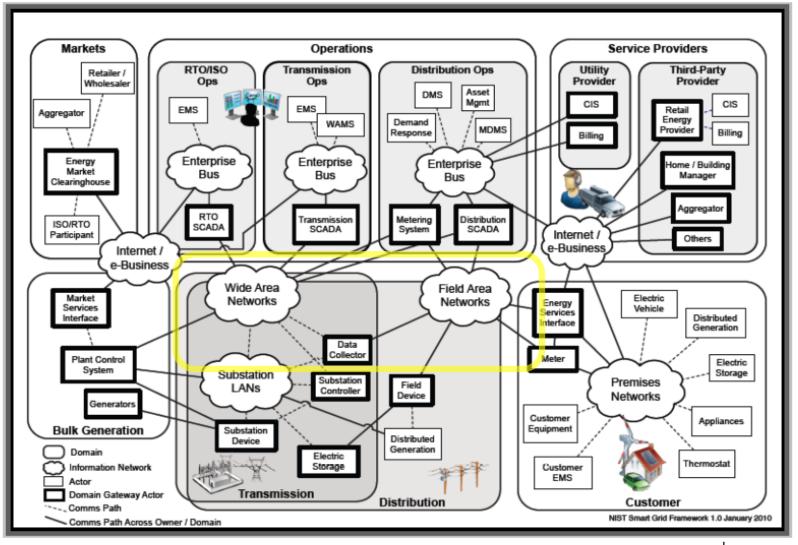
- Introduction to the Field Area Network
- Value Proposition
- Project Update
- Project organization and plans

Introduction

Smart Grid Technology - Conceptual Layout

Electric Grid Devices

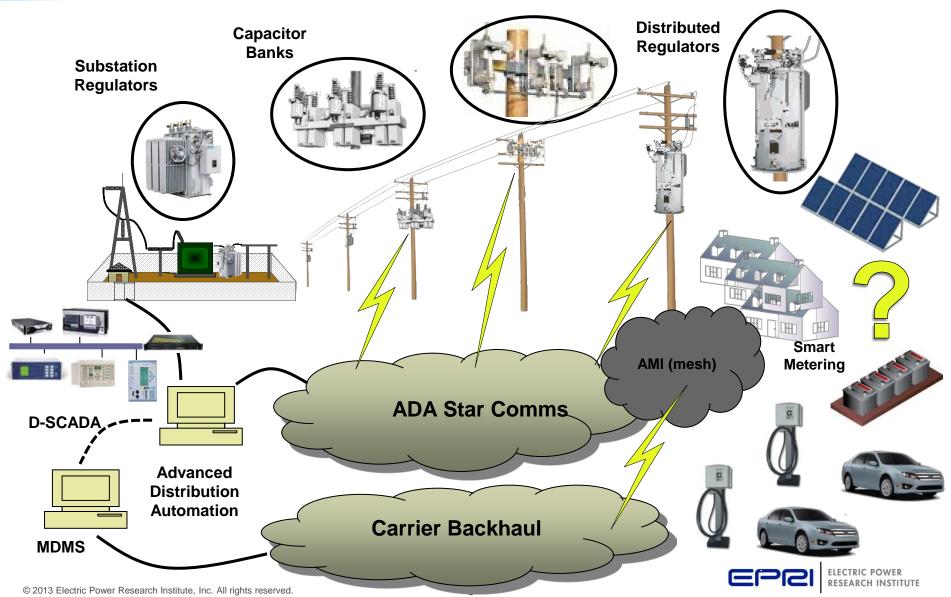
Intelligent, interconnected equipment to deliver, monitor, measure, and control the flow of electricity on the distribution system.


Software & Logical Architecture

The analysis and data-management tools to dynamically optimize value by balancing supply and demand while considering the physical, societal, and financial constraints

TUTE

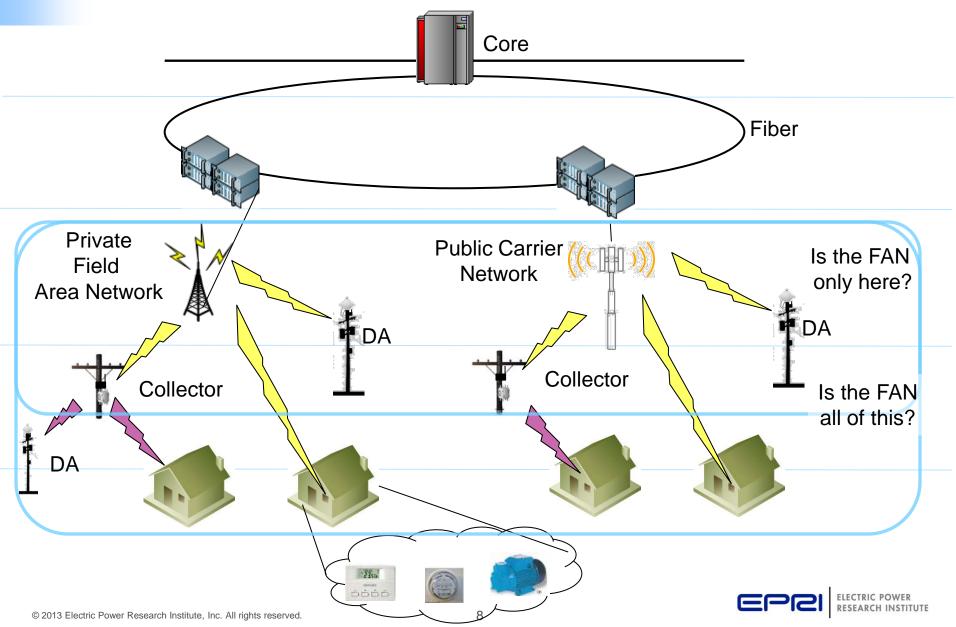
A modern grid includes 3 primary components: 1.) electric grid devices, 2.) telecommunications infrastructure, and 3.) the software and logical architecture to enable measurement, control, and optimization.


NIST Conceptual Reference Diagram for Smart Grid Information Networks

Current Approach and Challenges

Sectionalizers

Field Area Network


Sectionalizers Distributed Capacitor Regulators Banks **Substation** Regulators ZH r HL Smart AMI Metering (mesh) D-SCADA Field Area Network Advanced Distribution Automation MDMS

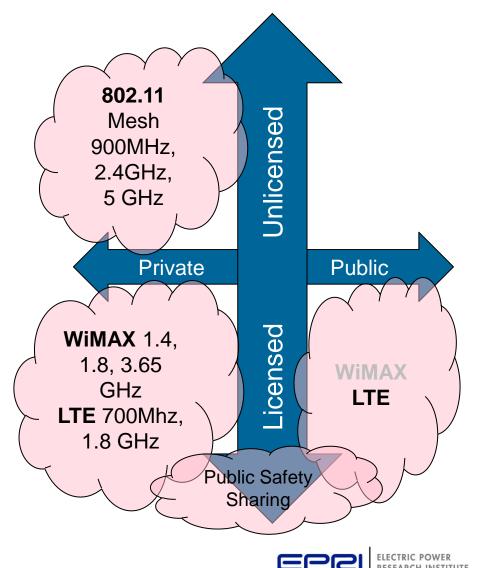
7

ELECTRIC POWER RESEARCH INSTITUTE

© 2013 Electric Power Research Institute, Inc. All rights reserved.

The FAN in the communications hierarchy

What is a Field Area Network (FAN)?


- A unified network supporting multiple utility applications
 - Possibly multiple technologies, but still a single integrated network.
- High performance able to support DA and ADA
- Scalable to support growth and emerging needs: DER, PV, EVs
- Integration/Convergence of existing services – AMI backhaul, LMR voice, etc

Open Questions

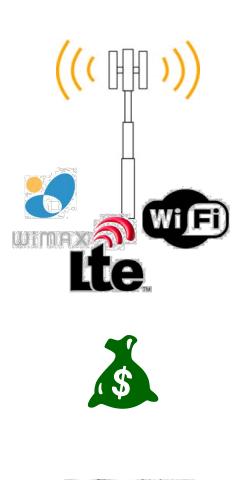
- What is the reliability and performance of various technology options?
 - Private cellular architecture
 - Unlicensed (mesh or point-to-point)
 - Lightly licensed
 - Public Safety Sharing
- What is the reliability and performance of commercial carriers?

Field Area Network (FAN) Demonstration Project

Objective: Answer open questions about the FAN

Approach:

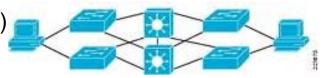
- Multiple member utilities collaborate on the design, implementation and analysis of FAN pilot projects using a variety of technologies and approaches
- Conduct a Vendor Forum series where FAN vendors make presentations and have Q&A with members
- Participate in Interoperability Plugfests for FAN technologies with industry alliances



Value Proposition

FAN Demo – Benefits of Participation

- Share experience and learning related to reliability and performance characteristics the various technology options
- Share experience and learning related to business case, financing, spectrum options, and cost/benefit analysis of network deployment
- EPRI services related to the FAN
 - Planning and estimating network deployment
 - Communications Assessment Workshop

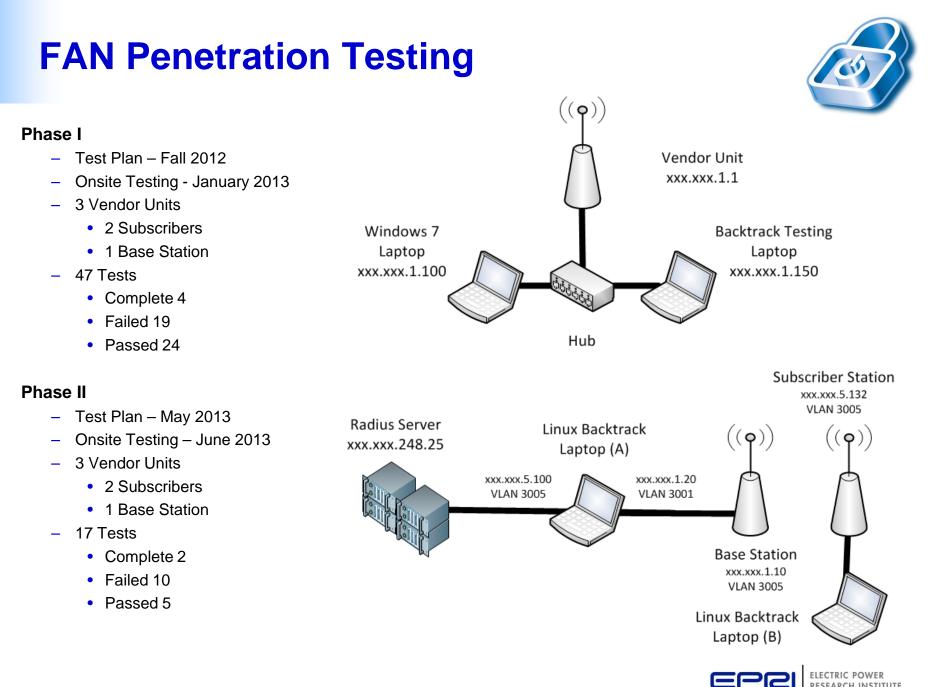


FAN Demo – areas of new learning

- Application Integration
 - Integration with core networks and IT systems
 - Integration of workforce communications
 - Interoperation between Distribution and IT/Telecom
- Network Management
 - QoS and Priority provisioning for critical applications
 - Cyber Security best practices
- Collaboration on FAN network reliability for different applications
 - Cost / benefit, Metrics, Reliability
 - Assessment of failure impact and mitigation
- Carrier Evaluation meeting utility requirements
 - Including hybrid network scenarios
- FAN Evolution (Spectrum, Scalability, Future Proofing)

FAN Demo Project Update

Background of research plan


- Members developed list of topics and priorities
- Different members have different areas of focus
- Different members are at different stages of their projects
- Currently 7 members: 6 host sites, and 1 participant

			SRP	Duke	H-One	UI	GRE	NPPD	HQ
	1	Securing the FAN							
	2	High reliability network architecture			M		M		M
2	3	QoS w/ impaired network conditions							
2	4	AMI vs. broadband FAN technologies for DFA				$\mathbf{\overline{\mathbf{N}}}$			M
	5	Network Entry w/ large # of devices joining		$\mathbf{\overline{\mathbf{N}}}$			$\mathbf{\overline{\mathbf{N}}}$		
	6	Long-term reliability (monitoring and metrics)		$\mathbf{\overline{\mathbf{N}}}$			$\mathbf{\overline{\mathbf{N}}}$		
	7	QoS on shared networks, w/ multi-applications		$\mathbf{\overline{\mathbf{N}}}$	M				
2	8	Distributed vs. centralized processing		$\mathbf{\overline{\mathbf{N}}}$					
5	9	Application Integration & analytics: Using new data		$\mathbf{\overline{\mathbf{N}}}$					
	10	Network management systems and techniques							M
	11	FAN for Field Force: Data/Voice							
5	12	Reliability of public carrier networks.		M					
	13	Determining requirements for private networks	V						
?	14	Best practices: organizational structures for FAN							
	15	Propagation Studies, and verification of accuracy	$\mathbf{\overline{\mathbf{N}}}$		N	N			M
5	16	Integrating applications beyond electric delivery	$\mathbf{\overline{\mathbf{A}}}$						
•	17	Best practices for connecting devices to the FAN	$\mathbf{\overline{\mathbf{N}}}$			$\mathbf{\overline{\mathbf{N}}}$			
	18	Sharing Networks with Public Safety							
	19	Operation in the 3.65 GHz band	$\mathbf{\overline{\mathbf{N}}}$						

			SRP	Duke	H-One	UI	GRE	NPPD	HQ
	1	Securing the FAN	V						>
	2	High reliability network architecture	$\mathbf{\overline{\mathbf{A}}}$	V	V	V	M		M
2	3	QoS w/ impaired network conditions							
	4	AMI vs. broadband FAN technologies for DFA				N			M
	5	Network Entry w/ large # of devices joining		M			M		
	6	Long-term reliability (monitoring and metrics)		M					M
2	7	QoS on shared networks, w/ multi-applications		M					M
2	8	Distributed vs. centralized processing							
5	9	Application Integration & analytics: Using new data							
	10	Network management systems and techniques							
5	11	FAN for Field Force: Data/Voice							
5 -	12	Reliability of public carrier networks.							
5	13	Determining requirements for private networks			N	$\mathbf{\overline{\mathbf{N}}}$			
? [14	Best practices: organizational structures for FAN							
	15	Propagation Studies, and verification of accuracy			M	N			$\mathbf{\overline{\mathbf{N}}}$
5	16	Integrating applications beyond electric delivery							
•	17	Best practices for connecting devices to the FAN				$\mathbf{\overline{\mathbf{N}}}$			
	18	Sharing Networks with Public Safety							
	19	Operation in the 3.65 GHz band							

			SRP	Duke	H-One	UI	GRE	NPPD	HQ
	1	Securing the FAN							
	2	High reliability network architecture			M				P
2	3	QoS w/ impaired network conditions			N			V	
5	4	AMI vs. broadband FAN technologies for DFA							M
	5	Network Entry w/ large # of devices joining							
	6	Long-term reliability (monitoring and metrics)							
5	7	QoS on shared networks, w/ multi-applications			M			V	
	8	Distributed vs. centralized processing							
5	9	Application Integration & analytics: Using new data							
	10	Network management systems and techniques							$\mathbf{\overline{\mathbf{N}}}$
	11	FAN for Field Force: Data/Voice							
5	12	Reliability of public carrier networks.							
5	13	Determining requirements for private network	V		M	M			
? [14	Best practices: organizational structures for FAN							
5	15	Propagation Studies, and verification of accuracy			N				M
5	16	Integrating applications beyond electric delivery							
•	17	Best practices for connecting devices to the FAN							
	18	Sharing Networks with Public Safety						V	
	19	Operation in the 3.65 GHz band	V						


SRP FAN Pilot Project

SRP, in partnership with EPRI, launched a FAN Pilot in May 2012 with the following objectives:

- 1) Implement base stations at three locations
- 2) Define requirements, integrate, and test 2-way communications for various end user applications
- 3) Assess technology (WiMAX vs. LTE, RF spectrum & cyber security)
- 4) Evaluate alternative public/private models
- 5) Assess the business case
- 6) Develop strategy & proposal

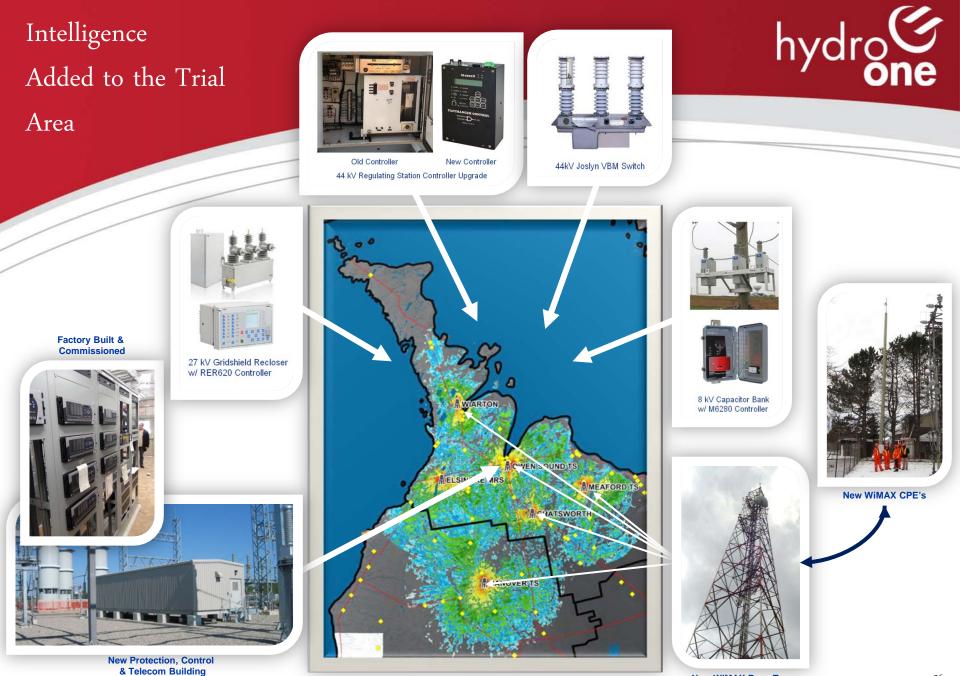
FAN Deployment Status

End User Applications

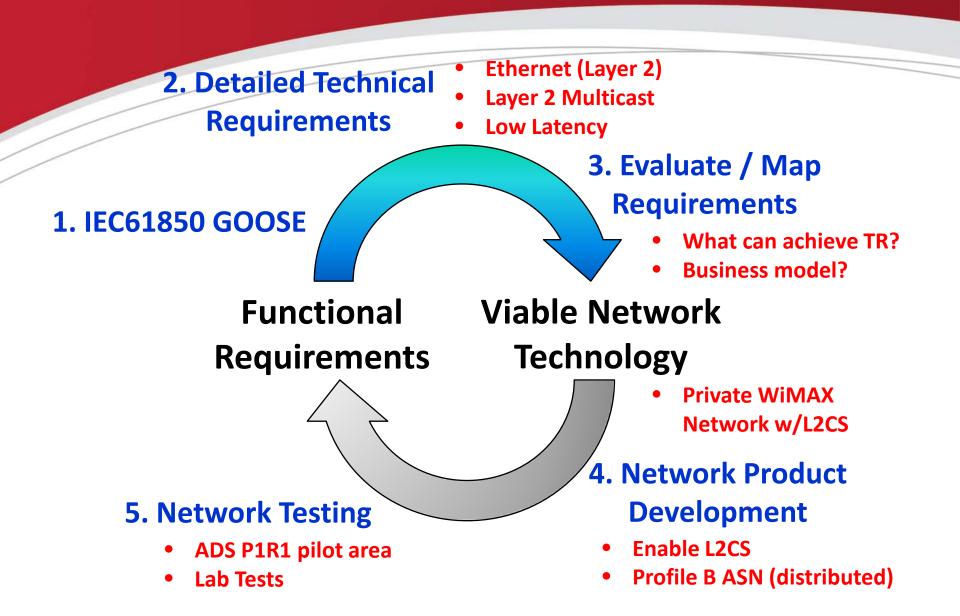
• Applications in scope Distribution Feeder Automation Power Quality Metering Remote Fault Indication VOLT/VAR Management Transformer Monitoring

Water Gate Keeper Control Water SCADA & Measurement Wireless IP Security Mobility

- Defined use cases, integrated devices & tested
- Demonstrated successful integration & identified application benefits


			SRP	Duke	H-One	UI	GRE	NPPD	HQ
	1	Securing the FAN							
	2	High reliability network architecture			M	M			
2	3	QoS w/ impaired network conditions						$\mathbf{\nabla}$	
5	4	AMI vs. broadband FAN technologies for DFA				V			M
	5	Network Entry w/ large # of devices joining		M			M		
	6	Long-term reliability (monitoring and metrics)		$\mathbf{\overline{\mathbf{N}}}$					M
2	7	QoS on shared networks, w/ multi-applications		V			V	V	V
	8	Distributed vs. centralized processing		M					
5	9	Application Integration & analytics: Using new data		M					$\mathbf{\overline{\mathbf{N}}}$
	10	Network management systems and techniques							$\mathbf{\overline{\mathbf{N}}}$
	11	FAN for Field Force: Data/Voice							
5	12	Reliability of public carrier networks.							
3	13	Determining requirements for private networks			N	V			
? [14	Best practices: organizational structures for FAN							
	15	Propagation Studies, and verification of accuracy			N	$\mathbf{\overline{\mathbf{A}}}$			
5	16	Integrating applications beyond electric delivery							
•	17	Best practices for connecting devices to the FAN				V			
	18	Sharing Networks with Public Safety							
	19	Operation in the 3.65 GHz band							

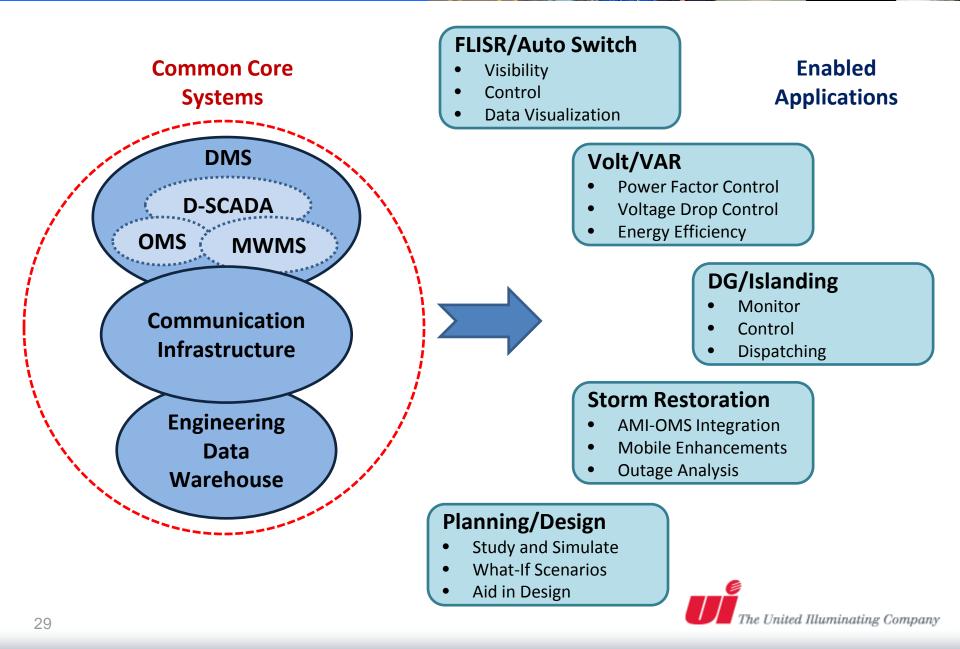
Business Objectives for Networks in Advanced Distribution System


- Create and implement a telecom network that facilitates the following:
 - 1. Single <u>unified</u> network capable of supporting multiple uses/users with differentiated priorities and Quality of Service.

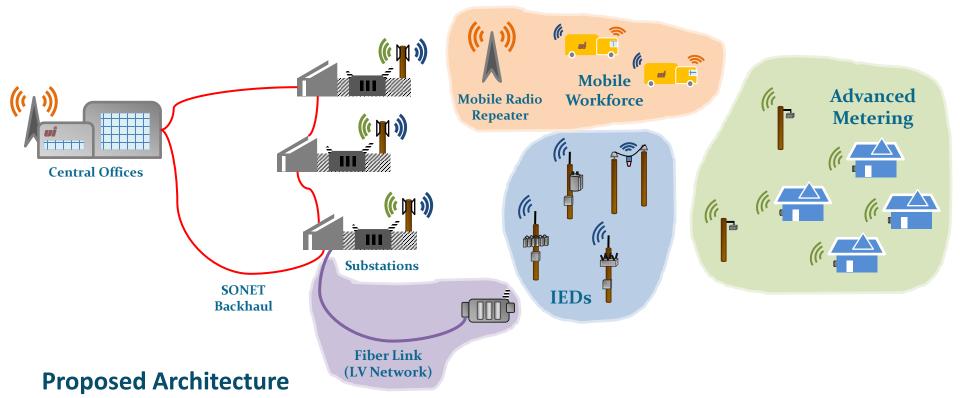
hyd

- 2. Cost-effective implementation; leverage existing assets where possible.
- 3. Meet the application requirements of the ADS project.

ADS Network Development Cycle



			SRP	Duke	H-One	UI	GRE	NPPD	HQ
	1	Securing the FAN	$\mathbf{\overline{\mathbf{N}}}$						
	2	High reliability network architecture	$\mathbf{\overline{\mathbf{N}}}$		M	V			M
2	3	QoS w/ impaired network conditions						M	
5	4	AMI vs. broadband FAN technologies for DFA <				M			M
	5	Network Entry w/ large # of devices joining		M					
	6	Long-term reliability (monitoring and metrics)							M
2	7	QoS on shared networks, w/ multi-applications					M	M	
	8	Distributed vs. centralized processing							
5	9	Application Integration & analytics: Using new data		M					M
	10	Network management systems and techniques							$\mathbf{\overline{\mathbf{N}}}$
	11	FAN for Field Force: Data/Voice							
) -	12	Reliability of public carrier networks.							
3	13	Determining requirements for private networks				V			M
?	14	Best practices: organizational structures for FAN							
	15	Propagation Studies, and verification of accuracy	\checkmark		M	$\mathbf{\overline{\mathbf{A}}}$			M
5	16	Integrating applications beyond electric delivery	$\mathbf{\overline{\mathbf{N}}}$						
	17	Best practices for connecting devices to the FAN				$\mathbf{\overline{\mathbf{N}}}$			
	18	Sharing Networks with Public Safety							
	19	Operation in the 3.65 GHz band	$\mathbf{\overline{\mathbf{N}}}$						



Automation Vision

Communications

- Fiber-Optic Backhaul
- Field Area Network (FAN)
 - 900 MHz Spread Spectrum for AMI
 - Hybrid RF Network for IEDs
 - Fiber-Optic for Low Voltage Networks
- Scalable, Low Latency, High Throughput, QoS

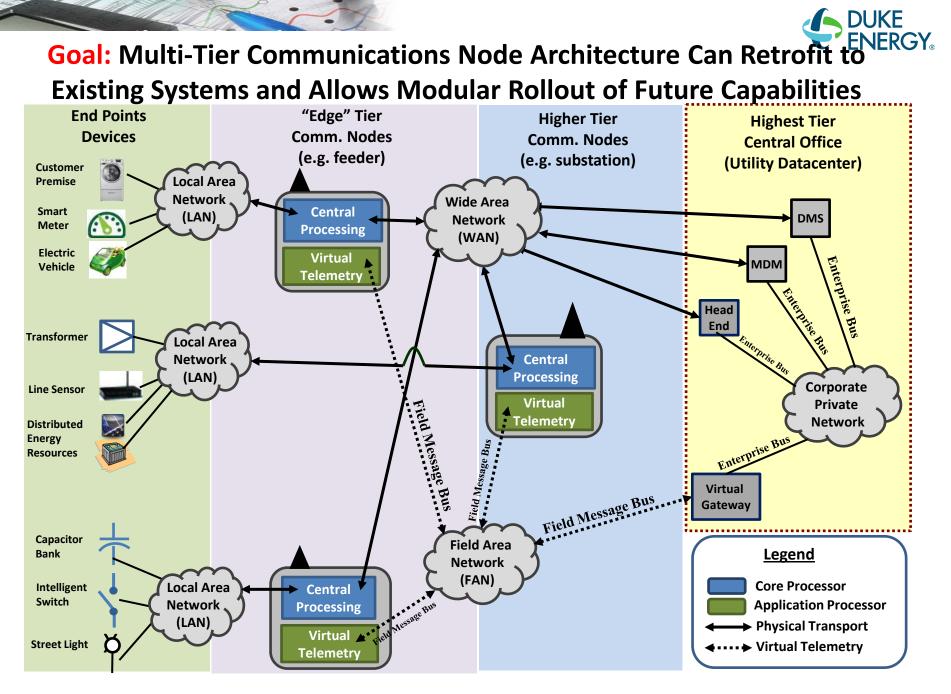
Networks

MDS INET Series

Technical Specs

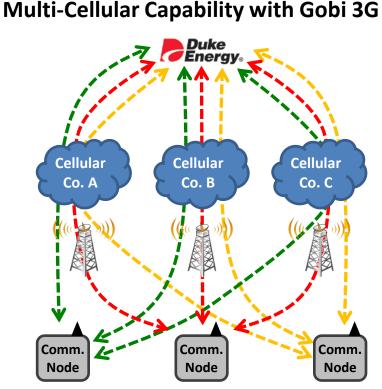
- IP/Ethernet Radio
- 902-928 MHz ISM
- FHSS
- 512/256 kbps
- 8-15 miles range (typical fixed)
- RC4-128 encryption
- RADIUS, EAP/TLS, etc. authentication
- Power Consumption
 - 7 W transmit
 - 2.8 W receive

Landis |Gyr⁺

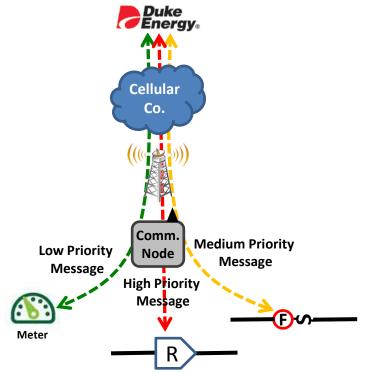

Installed Base

- ~120,000+ Customer Meters
- ~4,100+ Repeaters/Collectors **Overview**
- 904-927.9 MHz
- Mesh Network

			SRP	Duke	H-One	UI	GRE	NPPD	HQ
	1	Securing the FAN	\checkmark	M					
	2	High reliability network architecture				\checkmark			M
2	3	QoS w/ impaired network conditions							
3	4	AMI vs. broadband FAN technologies for DFA				$\mathbf{\overline{\mathbf{N}}}$			M
	5	Network Entry w/ large # of devices joining		V			\checkmark	V	\backslash
	6	Long-term reliability (monitoring and metrics)							
2	7	QoS on shared networks, w/ multi-applications		$\mathbf{\overline{\mathbf{N}}}$	N			M	
2	8	Distributed vs. centralized processing							\bigvee
	9	Application Integration & analytics: Using new data							
	10	Network management systems and techniques							
	11	FAN for Field Force: Data/Voice							
5	12	Reliability of public carrier networks.		M					\bigvee
3	13	Determining requirements for private networks			M				
3	14	Best practices: organizational structures for FAN							
	15	Propagation Studies, and verification of accuracy	\checkmark		M	$\mathbf{\overline{\mathbf{N}}}$			
5	16	Integrating applications beyond electric delivery							
	17	Best practices for connecting devices to the FAN							
	18	Sharing Networks with Public Safety							
	19	Operation in the 3.65 GHz band							


11/25/2013

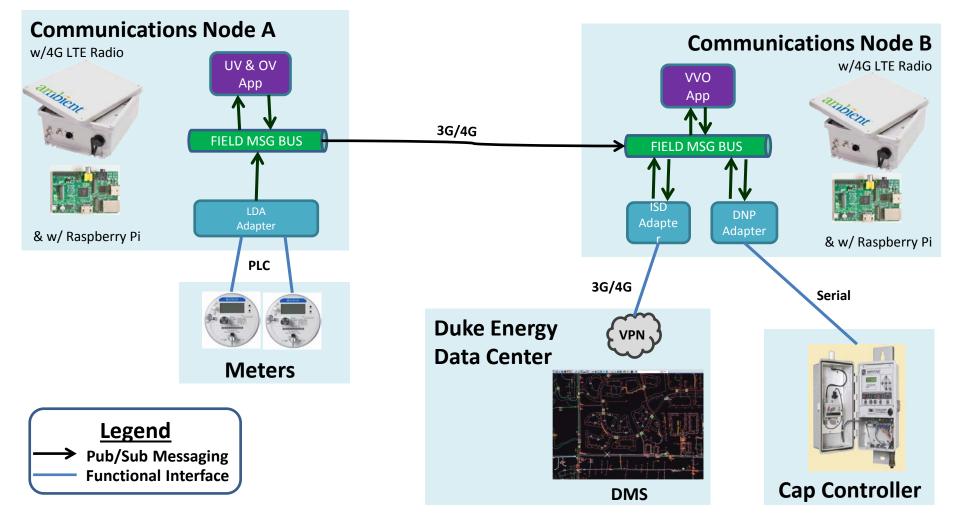
Duke Energy – Confidential and Proprietary Information - used with permission



Goal: Reliability and Enhanced Communications Capabilities

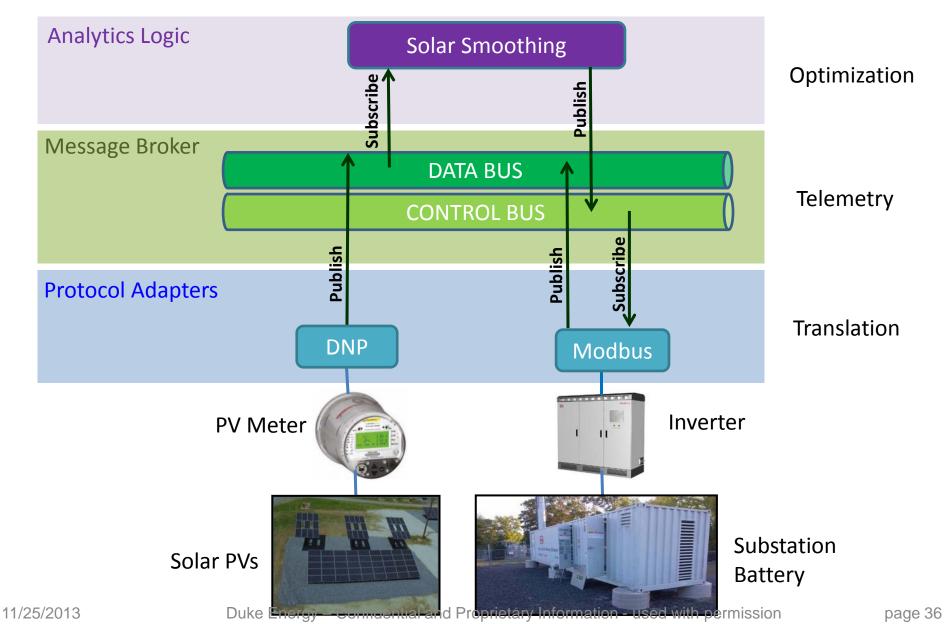
- Strengthen telecom infrastructure and improve cost by switching providers based on QoS or cost.
- Preserve private network and security across multiple cellular providers.
- Allow peer-to-peer traffic.

Message Prioritization with LTE


- Improve likelihood that critical messages are sent/received through message prioritization
- Ensure telecom infrastructure can identify high/medium/low priority messages.
- Strengthen telecom infrastructure and cost by prioritizing messaging needs.

11/25/2013

Duke Energy - Confidential and Proprietary Information - used with permission


Peer-to-Peer VVO Application at McAlpine Test Area

Solar Smoothing Application at McAlpine Test Area

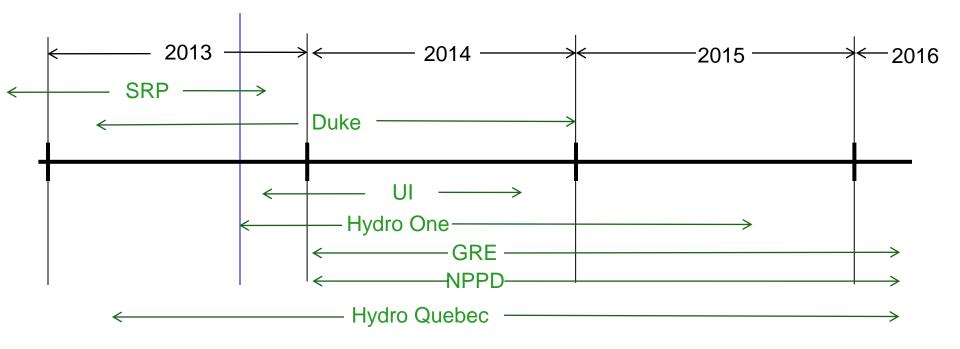
Other Members Update

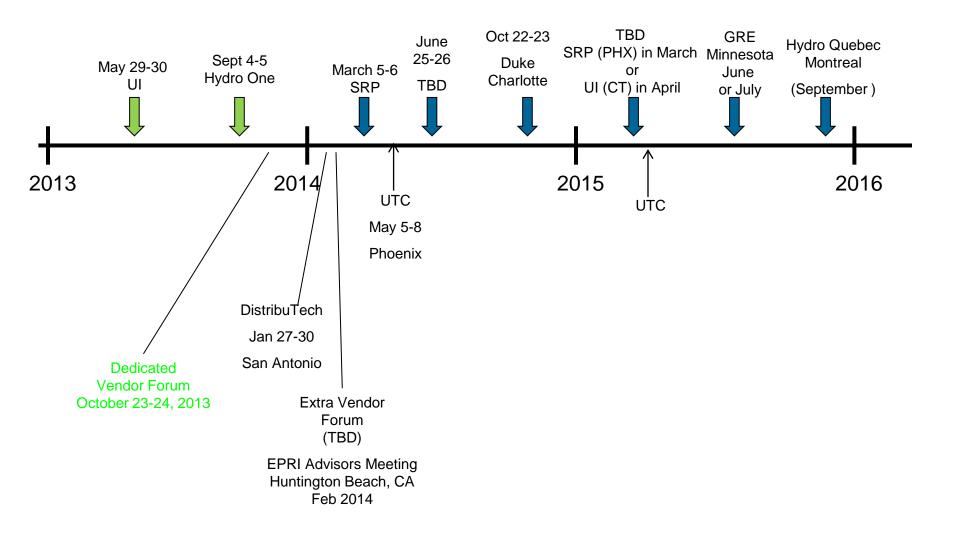
- Great River Energy
 - Pilot FAN deployment in Connexus Energy (distributor) area
 - Evaluating spectrum options for private network
- Nebraska Pubic Power District
 - Evaluating shared public safety network (700 MHz LTE)
- Hydro Quebec
 - Comprehensive FAN program (STAR Project)
 - WiMAX and cellular network performance characterization
 - Grid application traffic characteristics and capacity analysis
 - Long term field performance studies

Nebraska Public Power District Always there when you need us

FAN Demo project organization and plans

Collaborative Demonstration Model


- Practical Results from Actual Deployments
- A Variety of Scenarios
- Opportunity to be Host-Site or Participant
- Use Common Methodology so Results are Transferrable
- Multi-Year to accommodate Industry Evolution



Site Projects Timeline

FAN Demo meeting schedule and location

Host-Sites and Participants & Costs 3-Years (2013-2015)

Task	Participants	Hosts
Guidebook (FAN)	Х	Х
CBA Methods	Х	Х
Meetings, Vendor Forum, Plugfests	Х	Х
Annual Reports/Case Studies	Х	Х
FAN Comm's Assessment Workshop (On-Site)	Х	Х
Host site CBA/Financial Analysis		X*
Host site RF Modeling		
Host site Security Assessment		
Host site Reliability & Performance test plan		
Pricing T	ier 1 \$50k/year (\$150k)	\$125k/year (\$375k)
Pricing T	Tier 2 \$34k/year (\$102k)	\$85k/year (\$255k)
Pricing T	Tier 3 \$20k/year (\$60k)	\$50k/year (\$150k)

• At Least one task in depth, prioritized on an individual basis with each Host site

Questions?

It is not too late to get involved!

Tim Godfrey Senior Project Manager, Communications tgodfrey@epri.com (913) 706-3777

Together...Shaping the Future of Electricity

